电力监控系统在离线模式下,当电力负载关闭时,该系统持续监控电机绕组和电机启动器互连电缆的绝缘水平。该装置具有可调范围平衡电平,并具有输出计量驱动器(0~1mA)来驱动远程仪表或与ARM控制器接口。如果检测到低绝缘水平或离线接地故障,该装
高压线路利用电路需要后备接地故障?;さ墓δ?,如果中性接地电阻开路时发生接地故障,后备接地故障?;そ沟缭吹缏范系纾庵直;ぴ诘脱购椭醒瓜低持性嚼丛匠<?。这种类型的保护是通过潜在的继电?;だ词迪值摹?/div>
高压线路也利用电路需要中性接地电阻的过温检测。如果持续故障导致接地电阻发热,该?;さ哪康氖谴蚩淙肱涞绲缋碌慕拥丶觳橄鹊嫉缏?。系统应在接地电阻最大温升的50%范围内或150℃下运行,以较小者为准。由于与附近的电力变压器相比,故障接地电阻产生的热量相对较低,因而很难设计出确保这种?;た煽吭诵械南低?。监控系统已经接受了替代方法,如过载电流互感器,只要替代方法不需要控制电源运行,保障了监控系统在电力线路发生故障的条件下也能保持工作性能。
3.2功率因数校正和电压调节
大多数煤矿企业认识到电网功率因数校正的经济效益。通过将平均月电网功率因数保持在1.0附近,可以显著节省电力成本。由于大多数煤矿电网的功率因数校正发生在井外,这当然是放置电容器的方便位置,但它距离井下电机负载较远。因此,通过将电容器定位在尽可能靠近负载的位置来改善电压调节控制系统并没有充分发挥出性能。然而,在大容量长壁开采之前,这种功率因数校正优势并不那么重要。在一些大容量系统中,需要在电机负载附近放置功率因数校正的电容,以提供足够的电压调节并减轻电机启动期间电网电压下降的严重程度。
目前,煤矿企业现在正在以电网电力控制中心为连续采矿区安装电容器组。如果有足够的空间,电容器通常安装在电力中心集中控制平台上。采用这种布置,为每个电容器电路提供接地故障?;?。电气切换通常由技术人员执行真空接触器和电流或无功检测用于控制开关点。通常提供足够的时间延迟来防止过度切换。电抗器应与开关电容器串联,电容器应具有工厂接线的保险丝、熔断指示器和泄放电阻器。另一种降低电压降和改善电压调节的方法是使用更高的分配电压。过去,7.2kV是煤矿井下常见的配电电压。然而,在许多情况下,这种电压已经无法满足对于今天的大容量长壁工作面开采。因此,在运用电力监控系统时,应当安装一个单独的13.8kV配电系统,专用于长壁开采系统及其相关的井上电气设备??缶钠溆嗖糠秩杂?.2kV配电系统供电。另一种方案可以安装标称电压为14.4kV的配电系统,目的是在不超过15kV绝缘等级的情况下获得最高的配电电压。只有搭载适应的电网电压并进行功率因数校正,才能确保电力监控系统发挥较好的性能。
4电力监控试验测试分析
4.1试验系统组成设计
试验系统构成如图6所示。在10kV开闭所接一面KYN28A-12(Z)高压开关K2,模拟10kV变电所Ⅱ段任一馈出高压开关K2,在该开关柜安装DMP5101终端1台;再接4台BGP9L(Y)高压防爆开关K3、K4、K5、K6,模拟井下两级变电所的供电线路,每台高压防爆开关内安装1台矿用保护器。五台开关之间一次侧采用高压橡套电缆连接,末端高压防爆开关负荷侧接1根高压橡套电缆。在K2与K3之间设置短路点D1、在K4与K5之间设置短路点D2、在K6负荷侧电缆终端设置短路点D3。
4.2电力监控系统试验运行
点击系统图标进入煤矿电力监控软件,可以选择查看地面或井下配电室监控画面,同时点击井下配电室系统中的变电所界面,查看井下1号变电所监控画面。监控画面中矩形
图6试验系统组成
形状图标代表断路器,上下各配一刀闸表示断路器小车状态,综合显示高爆柜当前的运行情况,红色代表合闸位置,绿色代表分闸位置。系统另一个重要功能是对历史数据的查询,历史数据曲线主要功能是将电流、电压等数据以曲线的方式显示,提供直观的数据显示、对比功能。
历史报警模块对各类报警信息以时间为次序,详细罗列了报警的时间、编号、类型、报警内容及持续时间,方便操作人员查询及处理相关信息。
5.安科瑞电力监控解决方案
5.1概述
针对用户变电站(一般为35kV及以下电压等级),通过微机?;ぷ爸?、开关柜综合测控装置、电气接点无线测温产品、电能质量在线监测装置、配电室环境监控设备、弧光?;ぷ爸玫壬璞缸槌勺酆献远淖酆霞嗫叵低?,实现了变电、配电、用电的安全运行和全面管理。监控范围包括用户变电站、开闭所、变电所及配电室等。
Acrel-2000Z电力监控系统是安科瑞电气股份有限公司根据电力系统自动化及无人值守的要求,针对35kV及以下电压等级研发出的一套分层分布式变电站监控管理系统。该系统是应用电力自动化技术、计算机技术、网络技术和信息传输技术,集?;?、监测、控制、通信等功能于一体的开放式、网络化、单元化、组态化的系统,适用于35kV及以下电压等级的城网、农网变电站和用户变电站,可实现对变电站的控制和管理,满足变电站无人或少人值守的需求,为变电站安全、稳定、经济运行提供了坚实的保障。
5.2应用场所
适用于轨道交通,工业,建筑,学校,商业综合体等35kV及以下用户端供配电自动化系统工程设计、施工和运行维护。
5.3系统架构
Acrel-2000Z电力监控系统采用分层分布式设计,可分为三层:站控管理层、网络通信层和现场设备层,组网方式可为标准网络结构、光纤星型网络结构、光纤环网网络结构,根据用户用电规模、用电设备分布和占地面积等多方面的信息综合考虑组网方式。
5.4系统功能
(1)实时监测:直观显示配电网的运行状态,实时监测各回路电参数信息,动态监视各配电回路有关故障、告警等信号。
(2)电参量查询:在配电一次图中,可以直接查看该回路详细电参量。
(3)曲线查询:可以直接查看各电参量曲线。
(4)运行报表:查询各回路或设备时间的运行参数。
(5)实时告警:具有实时告警功能,系统能够对配电回路遥信变位,?;ざ?、事故跳闸等事件发出告警。
(6)历史事件查询:对事件记录进行存储和管理,方便用户对系统事件和报警进行历史追溯,查询统计、事故分析。
(7)电能统计报表:系统具备定时抄表汇总统计功能,用户可以自由查询自系统正常运行以来任意时间段内各配电节点的用电情况。
(8)用户权限管理:设置了用户权限管理功能,可以定义不同级别用户的登录名、密码及操作权限。
(9)网络拓扑图:支持实时监视并诊断各设备的通讯状态,能够完整的显示整个系统网络结构。
(10)电能质量监测:可以对整个配电系统范围内的电能质量和电能可靠性状况进行持续性的监测。
(11)??毓δ埽嚎梢远哉雠涞缦低撤段诘纳璞附性冻桃?夭僮?。
(12)故障录波:可在系统发生故障时,自动准确地记录故障前、后过程的各种电气量的变化情况。
(13)事故追忆:可自动记录事故时刻前后一段时间的所有实时稳态信息。
(14)Web访问:展示页面显示变电站数量、变压器数量、监测点位数量等概况信息,设备通信状态,用电分析和事件记录。
(15)APP访问:设备数据页面显示各设备的电参量数据以及曲线。
5.5系统硬件配置
6结语
本文针对目前矿井电力系统发生的系列变化,设计了井下电力监测系统。该系统的主要特点:对存在塑壳断路器的替代产品进行了监控设计;改进了接地故障保护;测试模式、障碍和内置测试电路的接地?;び斜浠桓纳频缪沟鹘诘母涸馗浇β室蚴U?;增加可编程控制器在控制、监控和诊断应用中的使用。ARM和以太网技术为核心的煤矿井下监控系统提供低功耗平台,证明了像ARM7这样的控制器的更高级版本可以有更快的执行速度和极低的功耗。通过使用远程操作,该系统可以更实时对电力系统运行情况进行观察,并且在工程现场验证了该系统的安全性、可靠性、稳定性。
参考文献
[1]王旭昭,侯磊,苏龙.2011—2014年全国煤矿重特大事故统计分析与启示[J].中国公共安全(学术版),2015(2):26-29.
[2]黄振球.浅谈变电站自动化系统应用中若干问题及处理办法[J].广东技术,2008(18):167-168.
[3]贾菲,李欣,马春光.60kV变电站无人值班改造方案的探讨[J].企业科技与发展,2009(22):137-139.
[4]刘国林,苗满文.煤矿井下供电过程电力监控系统应用研究.
[5]安科瑞企业微电网设计与应用手册 2022.05版.